23 research outputs found

    Semi-supervised Text Regression with Conditional Generative Adversarial Networks

    Get PDF
    Enormous online textual information provides intriguing opportunities for understandings of social and economic semantics. In this paper, we propose a novel text regression model based on a conditional generative adversarial network (GAN), with an attempt to associate textual data and social outcomes in a semi-supervised manner. Besides promising potential of predicting capabilities, our superiorities are twofold: (i) the model works with unbalanced datasets of limited labelled data, which align with real-world scenarios; and (ii) predictions are obtained by an end-to-end framework, without explicitly selecting high-level representations. Finally we point out related datasets for experiments and future research directions

    Teaching Categories to Human Learners with Visual Explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Teaching categories to human learners with visual explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Near-Optimal Machine Teaching via Explanatory Teaching Sets

    Get PDF
    Modern applications of machine teaching for humans often involve domain-specific, non- trivial target hypothesis classes. To facilitate understanding of the target hypothesis, it is crucial for the teaching algorithm to use examples which are interpretable to the human learner. In this paper, we propose NOTES, a principled framework for constructing interpretable teaching sets, utilizing explanations to accelerate the teaching process. Our algorithm is built upon a natural stochastic model of learners and a novel submodular surrogate objective function which greedily selects interpretable teaching examples. We prove that NOTES is competitive with the optimal explanation-based teaching strategy. We further instantiate NOTES with a specific hypothesis class, which can be viewed as an interpretable approximation of any hypothesis class, allowing us to handle complex hypothesis in practice. We demonstrate the effectiveness of NOTES on several image classification tasks, for both simulated and real human learners. Our experimental results suggest that by leveraging explanations, one can significantly speed up teaching

    Interpretable Machine Teaching via Feature Feedback

    Get PDF
    A student’s ability to learn a new concept can be greatly improved by providing them with clear and easy to understand explanations from a knowledgeable teacher. However, many existing approaches for machine teaching only give a limited amount of feedback to the student. For example, in the case of learning visual categories, this feedback could be the class label of the object present in the image. Instead, we propose a teaching framework that includes both instance-level labels as well as explanations in the form of feature-level feedback to the human learners. For image categorization, our feature-level feedback consists of a highlighted part or region in an image that explains the class label. We perform experiments on real human participants and show that learners that are taught with feature-level feedback perform better at test time compared to existing methods

    Semi-supervised Text Regression with Conditional Generative Adversarial Networks

    Get PDF
    Enormous online textual information provides intriguing opportunities for understandings of social and economic semantics. In this paper, we propose a novel text regression model based on a conditional generative adversarial network (GAN), with an attempt to associate textual data and social outcomes in a semi-supervised manner. Besides promising potential of predicting capabilities, our superiorities are twofold: (i) the model works with unbalanced datasets of limited labelled data, which align with real-world scenarios; and (ii) predictions are obtained by an end-to-end framework, without explicitly selecting high-level representations. Finally we point out related datasets for experiments and future research directions

    Teaching categories to human learners with visual explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Near-Optimal Machine Teaching via Explanatory Teaching Sets

    Get PDF
    Modern applications of machine teaching for humans often involve domain-specific, non- trivial target hypothesis classes. To facilitate understanding of the target hypothesis, it is crucial for the teaching algorithm to use examples which are interpretable to the human learner. In this paper, we propose NOTES, a principled framework for constructing interpretable teaching sets, utilizing explanations to accelerate the teaching process. Our algorithm is built upon a natural stochastic model of learners and a novel submodular surrogate objective function which greedily selects interpretable teaching examples. We prove that NOTES is competitive with the optimal explanation-based teaching strategy. We further instantiate NOTES with a specific hypothesis class, which can be viewed as an interpretable approximation of any hypothesis class, allowing us to handle complex hypothesis in practice. We demonstrate the effectiveness of NOTES on several image classification tasks, for both simulated and real human learners. Our experimental results suggest that by leveraging explanations, one can significantly speed up teaching

    Interpretable Machine Teaching via Feature Feedback

    Get PDF
    A student’s ability to learn a new concept can be greatly improved by providing them with clear and easy to understand explanations from a knowledgeable teacher. However, many existing approaches for machine teaching only give a limited amount of feedback to the student. For example, in the case of learning visual categories, this feedback could be the class label of the object present in the image. Instead, we propose a teaching framework that includes both instance-level labels as well as explanations in the form of feature-level feedback to the human learners. For image categorization, our feature-level feedback consists of a highlighted part or region in an image that explains the class label. We perform experiments on real human participants and show that learners that are taught with feature-level feedback perform better at test time compared to existing methods
    corecore